3,228 research outputs found

    Object Re-Identification from Point Clouds

    Full text link
    Object re-identification (ReID) from images plays a critical role in application domains of image retrieval (surveillance, retail analytics, etc.) and multi-object tracking (autonomous driving, robotics, etc.). However, systems that additionally or exclusively perceive the world from depth sensors are becoming more commonplace without any corresponding methods for object ReID. In this work, we fill the gap by providing the first large-scale study of object ReID from point clouds and establishing its performance relative to image ReID. To enable such a study, we create two large-scale ReID datasets with paired image and LiDAR observations and propose a lightweight matching head that can be concatenated to any set or sequence processing backbone (e.g., PointNet or ViT), creating a family of comparable object ReID networks for both modalities. Run in Siamese style, our proposed point cloud ReID networks can make thousands of pairwise comparisons in real-time (1010 Hz). Our findings demonstrate that their performance increases with higher sensor resolution and approaches that of image ReID when observations are sufficiently dense. Our strongest network trained at the largest scale achieves ReID accuracy exceeding 90%90\% for rigid objects and 85%85\% for deformable objects (without any explicit skeleton normalization). To our knowledge, we are the first to study object re-identification from real point cloud observations

    Reply

    Get PDF

    Liquid Metal-Based Multifunctional Micropipette for 4D Single Cell Manipulation.

    Get PDF
    A novel manufacturing approach to fabricate liquid metal-based, multifunctional microcapillary pipettes able to provide electrodes with high electrical conductivity for high-frequency electrical stimulation and measurement is proposed. 4D single cell manipulation is realized by applying multifrequency, multiamplitude, and multiphase electrical signals to the microelectrodes near the pipette tip to create 3D dielectrophoretic trap and 1D electrorotation, simultaneously. Functions such as single cell trapping, patterning, transfer, and rotation are accomplished. Cell viability and multiday proliferation characterization has confirmed the biocompatibility of this approach. This is a simple, low-cost, and fast fabrication process that requires no cleanroom and photolithography step to manufacture 3D microelectrodes and microchannels for easy access to a wide user base for broad applications

    Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19

    Get PDF
    There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19

    A multi-method and multi-scale approach for estimating city-wide anthropogenic heat fluxes

    Get PDF
    AbstractA multi-method approach estimating summer waste heat emissions from anthropogenic activities (QF) was applied for a major subtropical city (Phoenix, AZ). These included detailed, quality-controlled inventories of city-wide population density and traffic counts to estimate waste heat emissions from population and vehicular sources respectively, and also included waste heat simulations derived from urban electrical consumption generated by a coupled building energy – regional climate model (WRF-BEM + BEP). These component QF data were subsequently summed and mapped through Geographic Information Systems techniques to enable analysis over local (i.e. census-tract) and regional (i.e. metropolitan area) scales. Through this approach, local mean daily QF estimates compared reasonably versus (1.) observed daily surface energy balance residuals from an eddy covariance tower sited within a residential area and (2.) estimates from inventory methods employed in a prior study, with improved sensitivity to temperature and precipitation variations. Regional analysis indicates substantial variations in both mean and maximum daily QF, which varied with urban land use type. Average regional daily QF was ∼13 W m−2 for the summer period. Temporal analyses also indicated notable differences using this approach with previous estimates of QF in Phoenix over different land uses, with much larger peak fluxes averaging ∼50 W m−2 occurring in commercial or industrial areas during late summer afternoons. The spatio-temporal analysis of QF also suggests that it may influence the form and intensity of the Phoenix urban heat island, specifically through additional early evening heat input, and by modifying the urban boundary layer structure through increased turbulence
    • …
    corecore